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Preface

The twentieth century saw the birth of physical organic chemistry—the study of the inter-
relationships between structure and reactivity in organicmolecules—and thedisciplinema-
tured to a brilliant and vibrant field. Some would argue that the last century also saw the
near death of the field.Undeniably, physical organic chemistry has had somedifficult times.
There is a perception by some that chemists thoroughly understand organic reactivity and
that there are no important problems left. This view ignores the fact that while the rigorous
treatment of structure and reactivity in organic structures that is the field’s hallmark contin-
ues, physical organic chemistry has expanded to encompass other disciplines.
In our opinion, physical organic chemistry is alive and well in the early twenty-first

century. New life has been breathed into the field because it has embraced newer chemical
disciplines, such as bioorganic, organometallic, materials, and supramolecular chemistries.
Bioorganic chemistry is, to a considerable extent, physical organic chemistry on proteins,
nucleic acids, oligosaccharides, andother biomolecules.Organometallic chemistry traces its
intellectual roots directly to physical organic chemistry, and the tools and conceptual frame-
workof physical organic chemistry continue topermeate thefield. Similarly, studies ofpoly-
mers and other materials challenge chemists with problems that benefit directly from the
techniques of physical organic chemistry. Finally, advances in supramolecular chemistry re-
sult from a deeper understanding of the physical organic chemistry of intermolecular inter-
actions. These newer disciplines have given physical organic chemists fertile ground in
which to study the interrelationships of structure and reactivity. Yet, even while these new
fields have been developing, remarkable advances in our understanding of basic organic
chemical reactivity have continued to appear, exploiting classical physical organic tools and
developing newer experimental and computational techniques. These new techniques have
allowed the investigation of reaction mechanisms with amazing time resolution, the direct
characterizationof classically elusivemolecules suchas cyclobutadiene, andhighlydetailed
and accurate computational evaluation of problems in reactivity. Importantly, the tech-
niques of physical organic chemistry and the intellectual approach to problems embodied
by thediscipline remainas relevant as ever to organic chemistry. Therefore, a course inphys-
ical organic chemistrywill be essential for students for the foreseeable future.
This book is meant to capture the state of the art of physical organic chemistry in the

early twenty-first century, and, within the best of our ability, to presentmaterial that will re-
main relevant as thefield evolves in the future. For some time it hasbeen true that if a student
opens a physical organic chemistry textbook to a random page, the odds are good that he or
she will see very interesting chemistry, but chemistry that does not represent an area of sig-
nificant current research activity. We seek to rectify that situation with this text. A student
must know the fundamentals, such as the essence of structure and bonding in organic mol-
ecules, the nature of the basic reactive intermediates, and organic reaction mechanisms.
However, students should also have an appreciation of the current issues and challenges in
the field, so that when they inspect themodern literature theywill have the necessary back-
ground to read andunderstand current research efforts. Therefore,while treating the funda-
mentals, we havewherever possible chosen examples andhighlights frommodern research
areas. Further, we have incorporated chapters focused upon several of the modern disci-
plines that benefit from a physical organic approach. From our perspective, a protein, elec-
trically conductive polymer, or organometallic complex should be as relevant to a course in
physical organic chemistry as are small rings, annulenes, or nonclassical ions.
We recognize that this is a delicate balancing act. A course in physical organic chemistry
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cannot also be a course in bioorganic or materials chemistry. However, a physical organic
chemistry class shouldnot be ahistory course, either.Weenvision this text as appropriate for
many different kinds of courses, depending on which topics the instructor chooses to em-
phasize. In addition,we hope the bookwill be the first source a researcher approacheswhen
confronted with a new term or concept in the primary literature, and that the text will pro-
vide a valuable introduction to the topic. Ultimately, we hope to have produced a text that
will provide the fundamental principles and techniques of physical organic chemistry,
while also instilling a sense of excitement about the varied research areas impacted by this
brilliant and vibrant field.

Eric V. Anslyn
NormanHackerman Professor
University Distinguished Teaching Professor
University of Texas, Austin

Dennis A. Dougherty
GeorgeGrantHoag Professor of Chemistry
California Institute of Technology
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ANote to the Instructor

Our intent has been to produce a textbook that could be covered in a one-year course in
physical organic chemistry. The order of chapters reflects what we feel is a sensible order of
material for a one-year course, althoughother sequenceswould also be quite viable. In addi-
tion, we recognize that at many institutions only one semester, or one to two quarters, is
devoted to this topic. In these cases, the instructor will need to pick and choose among the
chapters and even sectionswithin chapters. There aremanypossible variations, and each in-
structorwill likely have a different preferred sequence, butwemake a few suggestions here.
In our experience, coveringChapters 1–2, 5–8, selectedportions of 9–11, and then 14–16,

creates a course that is doable in one extremely fast-moving semester. Alternatively, if or-
ganic reaction mechanisms are covered in another class, dropping Chapters 10 and 11 from
this order makes a very manageable one-semester course. Either alternative gives a fairly
classical approach to the field, but instills the excitement of modern research areas through
ouruse of ‘‘highlights’’ (seebelow).WehavedesignedChapters 9, 10, 11, 12, and 15 for an ex-
haustive, one-semester course on thermal chemical reaction mechanisms. In any sequence,
mixing inChapters 3, 4, 12, 13, and 17whenever possible, basedupon the interest and exper-
tise of the instructor, should enhance the course considerably. A course that emphasizes
structure and theory more than reactivity could involve Chapters 1–6, 13, 14, and 17 (pre-
sumably not in that order). Finally, several opportunities for special topics courses or parts
of courses are available: computational chemistry,Chapters 2 and14; supramolecular chem-
istry, Chapters 3, 4, and parts of 6;materials chemistry, Chapters 13, 17, and perhaps parts of
4; theoretical organic chemistry, Chapters 1, 14–17; and so on.
One of thewayswe bringmodern topics to the forefront in this book is through provid-

ing twokinds of highlights: ‘‘GoingDeeper’’ and ‘‘Connections.’’These are integral parts of the
textbook that the students should not skip when reading the chapters (it is probably important to
tell the students this). The GoingDeeper highlights often expand upon an area, or point out
what we feel is a particularly interesting sidelight on the topic at hand. The Connections
highlights are used to tie the topic at hand to a modern discipline, or to show how the topic
being discussed can be put into practice. We also note that many of the highlights make ex-
cellent starting points for a five- to ten-page paper for the student towrite.
As noted in the Preface, one goal of this text is to serve as a reference when a student or

professor is reading the primary literature and comes across unfamiliar terms, such as ‘‘den-
drimer’’ or ‘‘photoresist.’’ However, given the breadth of topics addressed, we fully recog-
nize that at some points the book reads like a ‘‘topics’’ book, without a truly in-depth analy-
sis of agiven subject. Further,many topics in amore classical physical organic text have been
given less coverage herein. Therefore,many instructorsmaywant to consult the primary lit-
erature and go into more detail on selected topics of special interest to them.We believe we
have given enough references at the end of each chapter to enable the instructor to expand
any topic. Given the remarkable literature-searching capabilities now available tomost stu-
dents, we have chosen to emphasize review articles in the references, rather than exhaus-
tively citing the primary literature.
We view this book as a ‘‘living’’ text, sincewe know that physical organic chemistrywill

continue to evolve and extend into new disciplines as chemistry tackles new and varied
problems. We intend to keep the text current by adding new highlights as appropriate, and
perhaps additional chapters as new fields come to benefit from physical organic chemistry.
We would appreciate instructors sending us suggestions for future topics to cover, along
with particularly informative examples we can use as highlights. We cannot promise that
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they will all be incorporated, but this literature will help us to keep a broad perspective on
where the field ismoving.
Given the magnitude and scope of this project, we are sure that some unclear presenta-

tions, misrepresentations, and even outright errors have crept in. We welcome corrections
and comments on these issues fromour colleagues around theworld.Manydifficult choices
had to bemade over the six years it took to create this text, and no doubt the selection of top-
ics is biasedbyourownperceptions and interests.Weapologize in advance to anyof our col-
leagueswho feel their work is not properly represented, and againwelcome suggestions.
Wewish you the best of luck in using this textbook.
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